Mach 1433

13 November 2023

$$
\text { Warm-up: Multiply }\left[\begin{array}{cc}
2 & 3 \\
-1 & 5
\end{array}\right]\left[\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right] \text {. }
$$

Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.
Example: $\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]\left[\begin{array}{ll}4 & 1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}11 & 8 \\ 1 & 9\end{array}\right]$

Example: $\left[\begin{array}{ll}4 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]=\left[\begin{array}{ll}7 & 17 \\ 0 & 13\end{array}\right]$
Note: when multiplying matrices, $A B$ and $B A$ can be different!

Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.

Example: $\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 15 & 16\end{array}\right]$
$2 \times 3 \times 3 \times 2 \times 2$
The "inner"/numbers must agree for $A B$ to exist.

The "outer" numbers give the dimensions of $A B$.

Rule: if $M=A B$ then $m_{i j}=(\text { row } i \text { of } A)_{j}($ column j of $B)$. dot product of two vectors

Rule: if $M=A B$ then $m_{i j}=(\text { row } i \text { of } A)_{j}($ column j of $B)$. dot product of two vectors
Example: $\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 15 & 16\end{array}\right]$

明
 1516

$[-2,1,5] \cdot[1,2,3]=-2+2+16=16$

$$
[-2,1,5] \cdot[-1,9,1]=2+9+5=16
$$

Rule: if $M=A B$ then $m_{i j}=($ row i of $A) \cdot($ column j of $B)$.

Example: $\left[\begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 15 & 16\end{array}\right]$

$$
\underline{2} \times 3 \quad 3 \times 2 \quad 2 \times 2
$$

Example: $\begin{gathered}{\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 3 & 1\end{array}\right]} \\ \left.\underset{3}{3} \times 2 \quad \begin{array}{ccc}4 & 1 & 0 \\ -2 & 1 & 5\end{array}\right] \\ 2 \times \underline{3}\end{gathered}$

Warnings

*. The matrix multiplication $A B$ is only possible if...

$$
\begin{array}{cc}
A & B \\
r \times c \\
r \times c^{\prime} \times c \\
\ldots . . \text { hese are equal. }
\end{array}
$$

If they are, the "outer" dimensions become the dimensions of matrix $A B$.

B In general, $A B$ and $B A$ do not have to be equal (in fact, one might exist and the other might not exist!).

If A is a 2×3 matrix and B is a 5×3 matrix,

- does $A+B$ exist?
- does $B+A$ exist?
- does $A+A$ exist?
- does $A B$ exist?
- does $B A$ exist?
- does $A A$ exist?

If C is a 3×3 matrix,

- does $A C$ exist?
- does $C B$ exist?
- does $C C$ exist?

Algebra with malrices

Matrices follow all the usual algebra rules except that $A B$ is not necessarily the same as $B A$.

If the left and right sides of the equations both exist, then these are true:

- $A+B=B+A$
- $A(B C)=(A B) C \quad \leftarrow$ Because of this, we can just write $A B C$ without parentheses.
- $A(B+C)=A B+A C$
- $(A+B)(C+D)=A C+B C+A D+B D$
- $(A+B)^{2}=A^{2}+A B+B A+B^{2}$ (note: not $\ldots 2 A B \ldots$)

The symbol \mathbb{R} is used for the collection of all real numbers.
The collection of all 2D vectors is \mathbb{R}^{2}.
The collection of all 3D vectors is \mathbb{R}^{3}, and so on.

The functions you study in school and in Analysis 1 are usually from \mathbb{R} to \mathbb{R}, meaning the input and output are numbers.

An example of a function from \mathbb{R}^{2} to \mathbb{R}^{2} could be $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x-y \\ e^{x}\end{array}\right]$, which can also be written as

$$
f(x \hat{\imath}+y \hat{\jmath})=(x-y) \hat{\imath}+e^{x} \hat{\jmath} \quad f(x, y)=\left(x-y, e^{x}\right)
$$

Transformacions
The image of a point or set of points under a transformation is the output of the function for that input.
Example: for $f(x, y)=(2 x+y, x)$,

- the image of the point $(4,3)$ is the point $(11,4)$.
- the image of the circle $x^{2}+y^{2}=25$ is a rotated ellipse.

Linear transformations

A linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} is a function with the following two properties:

- the image of a line must be a line or point,
- the origin should not move.

What other kinds of pictures can this create?

What does this look like in terms of formulas?

$$
f(x, y)=\left(\frac{1}{2} x, y\right)
$$

A linear transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ can

- rotate

- reflect

- shear

- scale (including disproportionately)

or do any combination of these to the original shape \bigcirc

From 3B1B's "Linear transformations and matrices" youtube.com/watch?v=kYB8IZa5AuE

From 3B1B's "Linear transformations and matrices" youtube.com/watch?v=kYB8IZa5AuE

If f is a linear transformation with $f(1,0)=(1,-2)$ and $f(0,1)=(3,0)$, we can deduce $f(x, y)$ for any point.

$$
\begin{gathered}
\hat{\imath} \rightarrow\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \quad \hat{\jmath} \rightarrow\left[\begin{array}{l}
3 \\
0
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow x\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+y\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 x+3 y \\
-2 x+0 y
\end{array}\right]}
\end{gathered}
$$

Linear Eransformations

By thinking carefully about grid lines, we can see that

$$
f(x \hat{\imath}+y \hat{\jmath})=x f(\hat{\imath})+y f(\hat{\jmath})
$$

for any linear transformation function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

- The examples of rotation, shearing, etc., do have this properties.

Officially, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation if

$$
f(a \vec{v}+b \vec{w})=a f(\vec{v})+b f(\vec{w})
$$

for all a, b, \vec{v}, \vec{w}. Note \mathbb{R}^{n} and \mathbb{R}^{m} can be any dimensions here.

Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation for which $f(1,0)=(3,-2)$ and $f(0,1)=(2,1)$. Calculate $f(5,7)$.

We can also write $f(\hat{\imath})=3 \hat{\imath}-2 \hat{\jmath}$ and $f(\hat{\jmath})=2 \hat{\imath}+\hat{\jmath}$, and the task is to calculate $f(5 \hat{\imath}+7 \hat{\jmath})$.

$$
\begin{aligned}
f(6 i+7 j) & =5 f(i)+7 f(j) \quad \text { from defn. of tin. transf! } \\
& =5(3 i-2 j)+7(2 i+j) \\
& =\cdots \\
& =29 i-3 j
\end{aligned}
$$

also written $\left[\begin{array}{c}29 \\ -3\end{array}\right]$ or just $(29,-3)$

The reason

$$
\left[\begin{array}{cc}
3 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
7
\end{array}\right]=\left[\begin{array}{c}
29 \\
-3
\end{array}\right]
$$

is calculated in this way is because it fits nicely with the geometric idea of applying a linear transformation that moves $(5,7)$ to to $(29,-3)$.

Every linear transformation has a corresponding matrix, and every matrix describes a linear transformation.

For example, $\left[\begin{array}{cc}3 & 2 \\ -2 & 1\end{array}\right]$ corresponds to the transformation

$$
f(x, y)=(3 x+2 y,-2 x+y)
$$

because

$$
\left[\begin{array}{cc}
3 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 x+2 y \\
-2 x+y
\end{array}\right]
$$

or

$$
\begin{gathered}
{\left[\begin{array}{cc}
3 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=x\left[\begin{array}{c}
3 \\
-2
\end{array}\right]+y\left[\begin{array}{l}
2 \\
1
\end{array}\right] .} \\
\text { This column is } f(\hat{\jmath}) .
\end{gathered}
$$

This column is $f(\hat{\imath})$.

How should we calculate

$$
\left[\begin{array}{ll}
0 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
3 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
7
\end{array}\right] ?
$$

Option 1:

- First, do $\left[\begin{array}{cc}3 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{l}5 \\ 7\end{array}\right]=\left[\begin{array}{c}29 \\ -3\end{array}\right]$.

This is applying g for which $g(\hat{\imath})=(3,-2)$ and $g(\hat{\jmath})=(2,1)$.

- Then, do $\left[\begin{array}{ll}0 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{c}29 \\ -3\end{array}\right]=\left[\begin{array}{c}-6 \\ 75\end{array}\right]$.

This is applying f for which $f(\hat{\imath})=(0,3)$ and $f(\hat{\jmath})=(2,4)$.

How should we calculate

$$
\left[\begin{array}{ll}
0 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
3 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
7
\end{array}\right] ?
$$

Option 2:

- First, do $\left[\begin{array}{ll}0 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}3 & 2 \\ -2 & 1\end{array}\right]=\left[\begin{array}{cc}-4 & 2 \\ 1 & 10\end{array}\right]$.

This is using a new function $f(g(\vec{v}))$.

- Then do $\left[\begin{array}{cc}-4 & 2 \\ 1 & 10\end{array}\right]\left[\begin{array}{l}5 \\ 7\end{array}\right]=\left[\begin{array}{c}-6 \\ 75\end{array}\right]$.

Summary

Matrices describe linear transformations, and every linear tr. has a matrix.

In 2D: any linear transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ will have the formula

$$
f(x, y)=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right]
$$

for some 4 numbers a, b, c, d. This is exactly the same as

$$
f(x, y)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Summary

The way we calculate $A \vec{v}$ is defined to match with doing a linear transformation (moving a point \vec{v} to its image).

The way we calculate $A B$ is defined so that $(A B) \vec{v}$ will match doing the linear transformation for B and then the linear transformation for A.

- This is why $A B \neq B A$!

Rotate-then-scale is not the same as scale-then-rotate.

It's easiest to think of all of this for $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, but in fact this works for $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and even for $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Warm-up 1: Solve the system

$$
\left\{\begin{array}{l}
2 x+3 y=5 \\
4 x+8 y=6
\end{array}\right.
$$

STAND UP when you have the answer.
Warm-up 2: Multiply the matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
32 \\
7
\end{array}\right] .
$$

We can check that the formula

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 x+0 y \\
0 x+1 y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

is correct, but if we think of a matrix's columns as recording the transformed positions of $\hat{\imath}$ and $\hat{\jmath}$, then it's even easier to see that $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ doesn't actually move points at all:

But this is the same as where $\hat{\imath}$ and $\hat{\jmath}$ started!

The $n \times n$ identity matrix, written $I_{n \times n}$ or I_{n} or just I, is a special matrix such that

- $I \vec{v}=\vec{v}$ for any vector \vec{v},
- $I M=M$ for any matrix M,
- $M I=M$ for any matrix M
if the products exist.
In a way, each matrix $I_{n \times n}$ acts like the number 1 because multiplying by it does not cause any change.
Formulas: $I_{2 \times 2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] . I_{3 \times 3}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] . I_{4 \times 4}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.

Multiply $\left[\begin{array}{cc}8 & -3 \\ -4 & 2\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 4 & 8\end{array}\right]=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$

$$
\begin{aligned}
\frac{1}{4}\left[\begin{array}{cc}
8 & -3 \\
-4 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
4 & 8
\end{array}\right] & =\frac{1}{4}\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right] \\
{\left[\begin{array}{cc}
8 / 4 & -3 / 4 \\
-4 / 4 & 2 / 4
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
4 & 8
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{cc}
2 & -3 / 4 \\
-1 & 1 / 2
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
4 & 8
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Inverse

With numbers, we know $1 x=x$ and we know $x \cdot x^{-1}=x \cdot \frac{1}{x}=1$.
The inverse of matrix A, which we write as A^{-1}, is a matrix that satisfies

$$
A A^{-1}=I \quad \text { and } \quad A^{-1} A=I .
$$

- For example, we just showed that $\left[\begin{array}{ll}2 & 3 \\ 4 & 8\end{array}\right]^{-1}=\left[\begin{array}{cc}2 & -3 / 4 \\ -1 & 1 / 2\end{array}\right]$.

Inverse

With numbers, we know $1 x=x$ and we know $x \cdot x^{-1}=x \cdot \frac{1}{x}=1$.
The inverse of matrix A, which we write as A^{-1}, is a matrix that satisfies

$$
A A^{-1}=I \quad \text { and } \quad A^{-1} A=I .
$$

- Some matrices don't have inverses. We say they are non-invertible.
- This is similar to 0 for numbers, but this can happen even for some matrices that don't have any 0 s in them!
- If A^{-1} does exist, then we say A is invertible.
- Any invertible matrix will be a square matrix (same \# of row as cols).

How can we use the inverse of a matrix? Example: $\left[\begin{array}{ll}2 & 3 \\ 4 & 8\end{array}\right]^{-1}=\left[\begin{array}{cc}2 & -3 / 4 \\ -1 & 1 / 2\end{array}\right]$.

- Solving systems of equations.

$$
\begin{aligned}
A\left[\begin{array}{l}
x \\
y
\end{array}\right] & =\left[\begin{array}{l}
5 \\
6
\end{array}\right] \\
A^{-1} A\left[\begin{array}{l}
x \\
y
\end{array}\right] & =A^{-1}\left[\begin{array}{l}
5 \\
6
\end{array}\right] \\
I\left[\begin{array}{l}
x \\
y
\end{array}\right] & =A^{-1}\left[\begin{array}{l}
5 \\
6
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =A^{-1}\left[\begin{array}{l}
6 \\
6
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{cc}
2 & -3 / 4 \\
-1 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
11 / 2 \\
-2
\end{array}\right]
\end{aligned}
$$

How can we use the inverse of a matrix? Example: $\left[\begin{array}{ll}2 & 3 \\ 4 & 8\end{array}\right]^{-1}=\left[\begin{array}{cc}2 & -3 / 4 \\ -1 & 1 / 2\end{array}\right]$.

- Solving equations with matrices.

Example: Find M such that $\left[\begin{array}{ll}4 & 0 \\ 2 & 5\end{array}\right]=M\left[\begin{array}{ll}2 & 3 \\ 4 & 8\end{array}\right]$.

- "Undoing" a linear transformation.
- Decrypting an message that was encrypted using a matrix algorithm.

There are many other uses if $\left[\begin{array}{ll}2 & 3 \\ 4 & 8\end{array}\right]$ appears in an engineering problem.

Determinant

For 2×2 matrices there is a simple formula for the inverse:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- The number $a d-b c$ is called the determinant of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
- We write $\operatorname{det}(M)$ for the determinant of matrix M. Some textbooks write M, but determinants can be <0.
- The inverse A^{-1} exists if and only if the determinant of A is not 0 .

For larger square matrices, $\left[\begin{array}{cc}a & \cdots \\ \vdots & \ddots\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(M)}\left[\begin{array}{cc}? ? & \cdots\end{array}\right]$ in some way.

Determinant

For 2×2 matrices,

$$
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

We can also write

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

or

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Next week: determinant of 3×3 matrix.

